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Data mining algorithms were used to develop models to forecast the outcome of leafroller pest monitor-
ing decisions on ‘Hayward’ kiwifruit crops in New Zealand. Using industry spray diary and pest monitor-
ing data gathered at an orchard block level for compliance purposes, 80 attributes (independent
variables) were created in three categories from the spray diary data: (1) individual insecticide applica-
tions applied during 2-week time windows, (2) groups of insecticide applications within time periods
prior to or after fruit set and (3) orchard management attributes. Five machine learning algorithms (Deci-
sion Tree, Naïve Bayes, Random Forest, AdaBoost, Support Vector Machine) and one statistical method
(Logistic regression) (classifiers) were used to develop models to forecast insecticide application deci-
sions for leafroller control, by predicting whether pest monitoring results were above or below a spray
threshold. Models to forecast 2011 spraying decisions were trained on 2008 and 2009 data and tested
on 2010 data. Forecasts were made for spray and no-spray decisions based upon pre-determined accept-
able rates of precision (proportion of correct decisions in test results). Orchard blocks in which a forecast
could not be made to a prescribed degree of precision were recommended to be monitored, which is the
normal practice. Spray decisions could not be forecast to an acceptable degree of precision, but decisions
not to spray were successfully forecast for 49% of the blocks to a precision of 98% (AdaBoost) and 70% of
the blocks to a precision of 95% (Naïve Bayes). Models with as few as four attributes gave useful forecasts,
and orchard management attributes were the most important determinants of model forecasting accu-
racy. The potential for this methodology to assist with pest spray forecasting using customised data sets
is discussed.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The New Zealand kiwifruit industry has operated an integrated
pest management decision-support system, KiwiGreen�, since
1997 (Aitken et al., 2012). This complies with GlobalGAP�

(http://www.globalgap.org/uk_en/) requirements ensuring that
agrochemical sprays are applied only when there is a demon-
strated need. Allowable spray applications on the green kiwifruit
cultivar Actinidia deliciosa ‘Hayward’ in spring before flowering
and in the first 6 weeks after flowering are based upon prior
research which identified windows of highest pest pressure and
optimal periods for insecticide application (McKenna, 1998;
Steven, 1999; Steven et al., 1994). Insecticide applications during
summer, after the 6-week post-flowering window, can be made
only in response to a pest threshold being exceeded following
orchard monitoring. The KiwiGreen pest monitoring procedures
for leafroller moth (Tortricidae) entail scouts examining fruit
clusters in the field for the presence of live larvae and their
feeding damage. An insecticide spray application threshold of
0.5% fruit clusters with live larvae and/or fresh feeding damage is
used.

Growers are required to keep records of spray applications and
submit their spray diaries to the marketing organisation Zespri
International Ltd prior to harvest, where they are checked for con-
formity with the allowable crop protection programme. Since 2007
a web-based electronic data entry system has been available for
spray diaries and pest monitoring results, allowing growers and
suppliers to enter data online. In 2010 it became compulsory for
growers to use this method for presenting spray diary data. The
electronic recording of pest monitoring data remains voluntary.
The historical pest monitoring and spray diary data contain
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potentially useful predictive information about pest risk during the
3-month summer period after fruit set.

Machine learning (ML) algorithms are quite widely used in agri-
cultural applications, particularly for GIS, soil science, hydrology,
precision agriculture, yield prediction and produce quality assur-
ance (e.g. Ahmadaali et al., 2013; Mollazade et al., 2012;
Papageorgiou et al., 2011; Pena et al., 2014; Robinson and Mort,
1997; Rodriguez-Galiano et al., 2014; Shahinfar et al., 2014). The
use of data mining/machine learning for decision-making in crop
protection is limited to a few examples of disease identification,
e.g. the detection of aflatoxins in chilli (Atas et al., 2012), identify-
ing soybean diseases (Babu et al., 2013) and for discovering the
presence of bacteria in plants (Verma and Melcher, 2012). We
are not aware of a decision-support system designed to assist with
pesticide spray application decisions in crops.

In kiwifruit crops in New Zealand, leafroller pest monitoring
occurs during summer after fruit set. Most growers monitor only
once at this time, and this analysis predicts the first (and in most
cases the only) leafroller orchard monitoring event in summer,
which normally occurs between 6 and 10 weeks after fruit set.
Growers are allowed to spray without monitoring in the first
6 weeks after fruit set because it is known to be a period when leaf-
roller infestations are high, however some growers will monitor
before spraying within this time period (Supplementary Fig. 1).
The aim of this study was to develop and demonstrate a method
to predict the outcome of leafroller pest monitoring events in kiwi-
fruit orchard blocks, specifically whether a leafroller pest monitor-
ing event will be above or below a spray threshold of 0.5% infested
or damaged fruit, to an acceptable degree of precision. A forecast to
spray or not to spray the crop for leafroller control would be made
from that prediction, where the degree of precision met a pre-
determined criterion for either a spray or no-spray decision. In
cases where neither a spray nor a no-spray decision could be pre-
dicted with sufficient precision, a recommendation to monitor the
crop would be made.
2. Methods

We follow Witten et al. (2011) in using the term ‘attribute’ for a
predictor variable (e.g. Bacillus thuringiensis spray application 2–
4 weeks after fruit set or sample time in days after fruit set) and
‘classifier’ for a machine learning algorithm (e.g. NaïveBayes,
J48). The analyses were performed using the WEKA data mining
workbench (v 3.6.6; http://www.cs.waikato.ac.nz/ml/weka/)
through the ADAMS (Advanced Data mining and Machine learning
System) workflow environment (https://adams.cms.waikato.ac.nz/
(Holmes et al., 2012)).
2.1. Data

2.1.1. Data rows – instances
Electronic data sets for leafroller pest monitoring and spray dia-

ries for years 2007 to 2012 were obtained from Zespri International
Ltd. Both the pest monitoring and spray diary data are organised by
year, KPIN (a unique identification number given to each orchard
entity), and block (a designated orchard area, usually surrounded
by shelter trees, typically 0.1–1.0 ha in area). The pest monitoring
data consisted of numbers of fruit clusters sampled and the pro-
portion of those fruit clusters that had leafroller feeding damage
or live leafroller larvae. Each monitoring event was classified as
either at or above (P0.5%; ‘spray’) or below (<0.5%; ‘no-spray’)
the spray threshold for leafrollers. This categorisation was the
dependent variable we were trying to predict. Only the first mon-
itoring event in each year was used in the analysis because most
growers now monitor only once per year for leafrollers and there
were insufficient data from second and subsequent monitoring
events to carry out a meaningful analysis.

The two data sets were merged and entries relating to insecti-
cides toxic to leafroller (Tortricidae) larvae on conventionally
grown A. deliciosa ‘Hayward’ fruit were selected (see supplemen-
tary Table 2 for list of chemicals). Preliminary analyses including
other kiwifruit sprays such as insecticides for control of sucking
pests (e.g. thiacloprid) and fungicides (e.g. iprodione) as attributes
showed that they were not influential as predictors. Each line of
merged data contained information unique to one block from
one KPIN in one year.

2.1.2. Attribute generation
Attributes were divided into three categories: (1) individual

insecticides applied in two-week time periods before and after
fruit set; (2) summed insecticide applications over defined time
periods (e.g. all insecticides applied before fruit set; all insecticides
applied between fruit set and monitoring; all insecticides applied
between 2 and 4 weeks after fruit set); and (3) orchard manage-
ment attributes (e.g. sprayer type, days between fruit set and leaf-
roller monitoring).

Orchard blocks within KPINs that received the same treatments
and had the same monitoring outcome were considered as dupli-
cates and data from only one block were retained for the analysis.
This reduced the available data by about 75%. Rows with missing
data were removed.

2.2. Analysis

The analysis proceeded through four stages: (1) selecting classi-
fiers; (2) selecting optimal data training sets (year combinations);
(3) attribute reduction from a long list of 80 non-redundant attri-
butes; and (4) predictive model development for spray and no-
spray decisions.

2.2.1. Classifier selection
Five supervised learning classifiers and one statistical model

classifier were tested. These were decision tree (J48, WEKA’s
implementation of C4.5); Naïve Bayes; Support vector machine
(WEKA Sequential minimal optimization (SMO) implementation);
two ensemble methods, AdaBoost and Random Forest; and Logistic
Regression. These models cover a broad range of machine learning
methods and have been widely used in a range of agriculture-
related fields (Babu et al., 2013; Gomez-Meire et al., 2014; Pena
et al., 2014; Rodriguez-Galiano et al., 2014; Shahinfar et al.,
2014; Shekoofa et al., 2014)). Each classifier is briefly described
below. For more details the reader should consult Witten et al.
2011 or cited references.

2.2.1.1. Decision tree. Decision trees (in this case a classification
tree) are widely used in data mining. Decision trees summarise
the relationship between attributes and the class of an object in
a dichotomously branching tree structure. Each bifurcation of the
tree (node) is defined by a value of one of the attributes which
divides the data set into two sub sets in a way which maximises
the homogeneity of the two resulting sets. The end of the tree
branches are termed leaves. Splitting continues to a user-defined
end point set by the minimum number of instances per leaf (in this
case 2). Predictions are made by sorting new instances down the
decision tree until a leaf is reached. Decision trees can also make
use of multi-way splits e.g. when splitting on all the values of a cat-
egorical variable.

2.2.1.2. Random Forest. Random Forest is a decision-tree ensemble
method that creates multiple trees by a re-sampling process
termed bagging (bootstrap aggregation). Many decision trees are
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constructed by re-sampling using bootstrapping with replacement.
Each node of the tree is split using a subset of the attributes chosen
randomly for each tree. Class membership for a new example is
predicted as the most commonly predicted class from the (aggre-
gated) decision trees by a simple unweighted ‘majority vote’. This
method is becoming widely used and has been shown to be very
effective for highly complex multi-criteria decision-making
problems in a variety of fields (Gomez-Meire et al., 2014;
Rodriguez-Galiano et al., 2014).

2.2.1.3. AdaBoost. AdaBoost is an ensemble method used to com-
bine the results from multiple learning models (called ‘weak; or
‘base’ learners) using boosting. Boosting also uses ‘voting’ to com-
bine the output of individual models. However, unlike bagging,
models are built sequentially, with successive models being
‘boosted’ by the re-weighting of instances according to previous
model outcomes. Instances that are predicted incorrectly in models
are assigned greater weight in subsequent models. Classification of
new instances occurs by a ‘weighted vote’ achieved by summing
the weights of all classifiers that vote for a particular class; the
class with the greatest total weighted vote is chosen. AdaBoost is
designed specifically for classification problems (Witten et al.,
2011). We have used the default Decision Stump algorithm in
WEKA as the weak learner.

2.2.1.4. Support Vector Machine. Support Vector Machine is a kernel
learning method which treats the training examples as two sets of
vectors (e.g. spray or nospray) in n-dimensional space. The training
data is mapped into a higher-dimensional space and a hyper-plane
is computed that achieves maximum separation between the clas-
ses. This separation is a function of the data that lie at the margin
between the two classes and these are the ‘support vectors’. Kernel
selection may have a large effect on model outputs. We used the
WEKA default PolyKernel to construct a linear support vector
machine.

2.2.1.5. Logistic regression. Logistic regression uses a generalised
linear model with maximum likelihood estimation to describe
the relationship between a binary dependent variable and a series
of independent variables which may be continuous, discrete or
dichotomous. It uses a logit transformation to create a linear model
to predict class probabilities.

2.2.1.6. Naïve Bayes. Naïve Bayes is a probabilistic algorithm using
Bayes’ Theorem and assumes that all explanatory variables are
independent. Naive Bayes uses the training examples to learn
probabilistic relationships between the predictor and response
variables. Class membership of a new example is predicted from
the posterior class probability derived from prior and conditional
probabilities. In spite of the simplistic assumption of variable inde-
pendence, Naive Bayes has proven to be very effective in address-
ing a wide range of machine learning problems (e.g. Gomez-Meire
et al., 2014; Witten et al., 2011).

More detailed information on the classifiers can be obtained
from Witten et al. (2011). WEKA classifier default parameter set-
tings were used throughout after preliminary tests showed that
parameter modifications had little effect on model accuracy, possi-
bly because of poor data quality.

2.2.2. Training data selection
There were six years of data (2007–2012), but the first two

years’ data sets were small (Supplementary Table 1). Insecticide
products used on the crop and crop management practices can
change from year to year. Models designed to predict insecticide
spraying events in future years will produce good predictions only
if they are trained and tested on previous years’ data that are
compatible with and relevant to the data they are trying to predict.
To test this, experiments were run using different combinations of
years of data for model training. Insecticide spray application pre-
diction models were developed for Naïve Bayes, Logistic Regres-
sion, J48, AdaBoost and Random Forest classifiers on a small
eight-attribute data set. Models were trained using prior years’
data combinations: training on 2007–10, 2008–10 or 2009–10,
and 2010 and testing on 2011.

2.2.3. Attribute reduction generation, selection and classifier
parameter tuning

Preliminary data analysis showed that models gave poor predic-
tions on the 2012 data set, suggested reasons for which are pre-
sented in the Discussion section. We could not therefore use the
2012 data for model prediction/validation, focusing instead on pre-
dictions for 2011. Attribute selection is an important part of data
mining analysis because of the potentially negative influence of
irrelevant or random attributes on many machine learning algo-
rithms (Shekoofa et al., 2014; Tirelli and Pessani, 2010; Witten
et al., 2011). We used a combination of computational and manual
or ‘expert’ selection methods (Witten et al., 2011). The initial data
set consisted of 144 attributes. This was reduced to 80 non-redun-
dant attributes (Supplementary Table 2) using the WEKA Remove-
Useless filter, which deletes constant attributes and nominal
attributes of which the values are different in all or almost all
instances (Witten et al., 2011).

A wrapper attribute selection subset evaluation method (Wrap-
perSubsetEval in WEKA) was used with the BestFirst search method
and five-fold cross validation (four-fold for SMO) on data from
2008 to 2010 to calculate reduced attribute sets for each of the
six classifiers (Supplementary Table 3). A wrapper attribute selec-
tion method is so called because it wraps the selection process
around the classifier(s) to be used in the analysis. The BestFirst
search algorithm scans the attribute space choosing and testing
attribute subsets, beginning with one attribute. Combinations of
new attributes are tested and the best performing attributes
retained until the last 5 attributes have failed to improve model
performance, after which the search method ‘back tracks’ to
remove redundant attributes. The algorithm uses ‘greedy hill
climbing’ which finds local rather than global optima as a trade
off for computational speed. This scheme selects attribute subsets
that are highly correlated with the class while having low inter-
correlation between selected attributes (Hall, 2000; Witten et al.,
2011). A reduced list of 58 attributes was developed, each of which
had been selected by at least one of the ML algorithms (Supple-
mentary Table 4). These were taken forward to the final attribute
selection process during the insecticide spray application forecast
modelling.

2.2.4. Developing predictive models for ‘spray’ and ‘no-spray’ decision-
making

The data mining models classify orchard blocks into either
spray or no-spray decisions, and rank the blocks according to their
likelihood, scaled from zero to 1, of returning the forecast decision.
Comparing predictions from the training data set with the actual
spray decisions in the test data set, the predictions can be classified
as true or false. Blocks with a high likelihood value are more likely
to return a true classification than those with a low value. In order
to make predictions of spray and no-spray decisions from the
model outputs, a point (‘threshold’) must be found along the con-
tinuum of likelihood values where an acceptable threshold rate of
forecast precision is reached. Precision is defined as the proportion
of correct decisions made (=true positives/(true positives + false
negatives)). The acceptable precision was set at 80% for spray deci-
sions and 95% for no-spray decisions. The ‘cut-off’ or ‘threshold’
likelihood value for either spray or no-spray decisions is therefore



Table 1
Attribute combinations used in models to predict crop protection decision-making in ‘Hayward’ kiwifruit orchards. Attributes fall into three categories: (1) individual insecticides
applied over different time periods, (2) summed insecticide applications in different time periods and (3) management-related attributes. For further detail of model attributes
see Supplementary Table 5.

Number of attributes in each of three categories

Model Total
attributes
in model

Individual
insecticide
attributes

Insecticides summed
over time period
attributes

Orchard
management
attributes

Description of attribute characteristics

1 58 44 9 5 All attributes selected by the wrapper subset evaluation (attribute selection
algorithm tested on 6 classifiers)

2 19 9 6 4 All attributes from model 1 selected by 2 or more classifiers
3 15 9 6 Individual insecticides + summed insecticide applications (model 2 without

management attributes)
4 14 9 1 4 Individual insecticides + management attributes + sum of insecticides applied up

to fruit set (model 2 without summed insecticide attributes except total
insecticides applied before fruit set)

5 13 3 6 4 Post-flowering insecticides + management attributes + summed insecticide
attributes

6 10 6 4 Management attributes + summed insecticide applications
7 9 5 4 Management attributes + summed insecticide applications
8 9a 9 Individual insecticide applications only
9 6 6 Summed insecticides attributes only
10 5 1 4 Management attributes + sum of insecticides applied before fruit set
11 4 4 Management attributes only

a Nine-attribute model based upon data from individual insecticide applications only, in contrast to the other nine-attribute model, which was a mix of management and
summed insecticide attributes.
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the value along the ranked list of likelihood values at which the
desired precision is just exceeded (and hence the predictions are
made to a required degree of precision). The proportion of the total
of spray or no-spray decisions that can be predicted from models
with the requisite degree of precision is termed the recall (=true
positives/(true positives + false positives)).

Precision and recall are the metrics used to evaluate model suc-
cess in forecasting the 2011 leafroller monitoring outcomes, using
the threshold likelihood values as the cut-off points for accepting a
spray or a no-spray decision. Thus, if the model likelihood value for
a block spray or no-spray decision is greater than the threshold
estimate, a decision either to spray or not to spray is returned. If
the block likelihood estimate lies outside the threshold values for
both spray and no-spray decisions, then the models are unable to
predict a spray or no-spray decision with the requisite precision
and a decision to monitor the block is returned.

Models were trained on the 2008 and 2009 data, tested on 2010
data, and used to predict 2011 leafroller monitoring results in clas-
ses of spray (P0.5% infested fruit clusters) or no-spray (<0.5%
infested fruit clusters).

The six classifiers, using default parameter values, were used to
develop 11 sets of models with a range of attribute sets from four
to 58 (see Results section and Supplementary Table 5) from the
attribute selection exercise (Table 1). Default parameter values
were chosen after preliminary analysis showed that changes to
starting parameter values made little difference to model out-
comes. Final leafroller spray application prediction models were
developed for the leafroller spray decision monitoring event in
conventional ‘Hayward’ blocks in 2011, using the 2008–09 data
for training and the 2010 data for testing.
3. Results

3.1. Training data set selection

The effect of training set age composition on percent correct
predictions for the 2011 data was relatively minor, inconsistent
in direction, and classifier-dependent (Supplementary Table 6).
But there was a tendency for model precision to decline in four
of the five ML algorithms tested when data older than 2 years were
used for training (Supplementary Fig. 2).
3.2. Attribute selection and data set evaluation

A total of 58 attributes were selected by the six classifiers with
the subset evaluation algorithm (Supplementary Tables 4 and 5).
This consisted of 44 individual insecticide applications defined
within two-week periods either side of fruit set, nine summed
insecticide applications before or after fruit set, and five orchard
management attributes. Only 19 attributes were selected by more
than one classifier, and only 10 were selected by three or more
classifiers (Supplementary Table 4).
3.3. Spray application decision prediction

Results for the J48 classifier were poor and are not presented.
Spray decisions were poorly predicted by all classifiers, reflecting
the greater difficulty in predicting the rarer event (only 17% of
blocks were sprayed in 2011 (Supplementary Table 1)). Naïve
Bayes and AdaBoost were the best classifiers for predicting spray
decisions and produced marginally acceptable models of spray
forecasts using 58 parameters (Table 2); but they predicted only
a small proportion (6–33%) of the spray class, and precision was
below the target 80%.

The classifiers were more successful at predicting no-spray
decisions (Table 3). Four Naïve Bayes models based on a range of
attribute groups (nine, 13, 14 and 19) predicted 67–70% of the
no-spray decisions in 2011 to the target precision of 95%, while
Logistic regression models with the same attribute ranges were
nearly as accurate (Table 3).

Support Vector Machine models had a higher recall than any
other classifier (over 80%), but the forecasts were less accurate,
with precision falling to 91–93%. AdaBoost models predicted only
about half the no-spray decisions, but did so in most models to a
very high degree of precision (98%) (Table 3). AdaBoost was also
remarkably consistent in its predictions across a range of models
with widely varying numbers of attributes. The four-attribute Ada-
Boost model produced the same recall and precision for the 2011
no-spray prediction as the 58 attribute model (Table 3). The four



Table 2
Model outputs for two classifiers and seven attribute combinations for 2010 test and 2011 predictions of leafroller spray decisions on ‘Hayward’ kiwifruit vines. Model attributes
are given in Table 1. tp = true positives; fp = false positives. Recall = proportion of the total class of spray decisions that were selected at 80% precision for the 2010 test data and
for the independent prediction for the 2011 data. Precision = proportion of prediction decisions that were correct.

Classifier & attribute nos. 2010 Test 2011 Prediction

Recall tp fp Precision Recall tp fp

Naïve Bayes
58 0.08 37 9 0.73 0.06 14 5
19 0.07 33 8 0.71 0.05 12 5
14 0.1 33 8 0.69 0.05 11 5
13 0.08 33 8 0.71 0.05 12 5
10 0.08 33 8 0.71 0.05 12 5

9 0.09 33 8 0.61 0.05 11 7
5 0.12 33 8 0.69 0.05 11 5

AdaBoost
58 0.12 41 10 0.63 0.33 76 44
19 0.13 52 12 0.62 0.3 70 43
14 0.13 52 12 0.62 0.3 70 43
13 0.13 52 12 0.62 0.3 70 43
10 0.14 45 11 0.6 0.26 62 42

9 0.14 45 11 0.6 0.27 62 42
5 0.14 45 11 0.6 0.27 62 42
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management attributes in that model, Supply area, Spraying equip-
ment, DaysFromLastSpray and Sampling Date (DaysFromFruitSet)
clearly have a strong influence on model performance. This effect
is also evident when comparing the 15-attribute, 9*-attribute and
six-attribute models containing only spray application attributes
(and no management attributes), which perform poorly compared
with comparable models that have mixed management and spray
application attributes (e.g. 9-, 10-, 13-, 14- and 19-attribute mod-
els, Table 3).

Plots of precision against recall values for Naïve Bayes, Ada-
Boost and Logistic Regression for 2010 test data (Fig. 1) shows that
changing attributes makes little difference to model performance
for no-spray decisions. With a high proportion of no-spray deci-
sions in the population (78% in 2010; range 57–83% over 6 years;
Supplementary Table 1), it is relatively easy to predict these to a
high degree of precision. However, the precision-recall relationship
is quite flat (Fig. 1), and small variations in model performance can
make large differences in the recall percentage that meets the 95%
precision criterion (compare 14- and 15-attribute models (with
and without management variables) in Table 3).

Making spray decisions with a precision of >80% is more diffi-
cult and there is much more variability in the precision-recall
graphs between models (Fig. 1, Table 2). The poor performance
of the model without the management attributes (15) compared
with those with management attributes (4, 9, 14, 58) is evident
(Fig. 1). It is also apparent from Fig. 1 that if the precision criterion
were lowered from 80% to, say 60%, the models could be used to
forecast 50–60% of the spray decisions.
3.4. The effects of individual attributes

This analysis has revealed hitherto unrecorded associations
between leafroller incidence and some attributes which require
closer inspection. Brand of sprayer was identified as influencing
leafroller incidence, implying that some sprayers are better than
others. The proportion of spray decisions in the 2008–2011 data
for the 10 most popular brands of sprayer (Supplementary Table 7)
shows a range from 12% to 50%. This information could have
commercial implications and clearly requires careful verification.

The proportion of spray decisions is influenced by the date of
sampling (Supplementary Fig. 1) and by region in which the crop
is grown (Supplementary Fig. 3). The influence of region on spray-
ing can be seen by plotting the proportion of spray decisions in
relation to the number of pre-monitoring insecticides applied by
region (Supplementary Fig. 4).
4. Discussion

This study has demonstrated the potential usefulness of
machine learning algorithms for extracting information from
industry spray diary and pest monitoring data, enabling kiwifruit
growers to predict the outcome of leafroller pest monitoring in
summer. With monitoring costs at $50–60 a hectare, growers will
save time and money using this method, even if it only predicts no-
spray decisions.

The spray forecasting system was to be trialled on growers’
properties in the 2013 season, but the trial was abandoned when
the models could not predict the 2012 spray application decisions.
A subsequent analysis has produced evidence in support of a
hypothesis that a new (first detection November 2010) and highly
virulent bacterial disease Pseudomonas syringae pathovar actinidiae
(Psa-V) may be affecting the susceptibility of vines to leafroller
attack, most plausibly through antagonistic changes to defensive
phytohormone concentrations (Hill, 2013). Thus, these analyses
may also be of use in the early detection of changes in pest and dis-
ease incidence over wide geographical areas.

Models with a combination of attributes from all three attribute
categories produce the most accurate forecasts (Table 2), but orch-
ard management attributes appear to be more influential than
insecticide attributes (e.g. compare 14- and 15-attribute models
in Fig. 1 and Table 2). With larger data sets, it may be possible
using this method to pick out combinations of insecticides and
application times that provide superior leafroller control. The
results point to the greater importance of post-flowering
(as opposed to pre-flowering) insecticide application attributes
(Supplementary Table 6), which is in agreement with the results
of field experiments (McKenna, 1998).

This analysis has highlighted marked regional differences in leaf-
roller pest incidence that were hitherto not recognised. The discov-
ery of a possible effect of spray machinery type on leafroller
incidence can be tested and could lead to improvements in spray
equipment. The relationship between leafroller incidence and mon-
itoring date is in agreement with experimental research on leafroller
insecticidal control (McKenna, 1998) and fruit damage phenology
(McKenna and Stevens, 2007) showing that leafroller damage
occurs mostly within the first 6 weeks of fruit set. The strong
relationship between pest monitoring date and leafroller damage



Table 3
Model outputs for five classifiers and 11 attribute combinations for 2010 test and 2011 predictions of leafroller no-spray decisions on ‘Hayward’ kiwifruit vines. Model attributes
are given in Table 1. tp = true positives; fp = false positives. Recall = proportion of the total class of no-spray decisions that were selected at 95% precision for the 2010 test data
and for the independent prediction for the 2011 data. Precision = proportion of prediction decisions that are correct.

Classifier & attribute Nos. 2010 Test 2011 Prediction

Recall tp fp Precision Recall tp fp

Naïve Bayes
58 0.83 1087 57 0.96 0.65 888 35
19 0.77 1001 52 0.95 0.68 935 50
15 0.51 563 29 0.93 0.36 499 35
14 0.72 1021 53 0.95 0.7 961 47
13 0.77 989 52 0.95 0.67 917 46
10 0.6 823 43 0.95 0.57 780 38
9 0.71 992 52 0.95 0.67 925 47
9a 0.29 513 26 0.93 0.59 812 57
6 0.38 311 16 0.94 0.16 218 14
5 0.57 847 44 0.96 0.59 814 34
4 0.51 773 40 0.96 0.59 814 37

Logistic Regression
58 0.77 1014 53 0.95 0.62 847 43
19 0.75 1002 52 0.95 0.67 924 50
15 0.61 711 37 0.94 0.55 748 51
14 0.74 998 52 0.94 0.68 926 55
13 0.73 975 51 0.95 0.67 921 49
10 0.66 878 46 0.96 0.62 852 40
9 0.72 958 50 0.95 0.67 923 48
9a 0.38 477 25 0.94 0.54 746 51
6 0.06 82 4 1.00 0.04 62 0
5 0.38 516 27 0.98 0.39 531 11
4 0.35 473 24 0.97 0.37 512 14

Random Forest
58 0.34 483 25 0.98 0.49 672 17
19 0.41 511 26 0.96 0.42 571 23
15 0.39 507 26 0.93 0.33 448 36
14 0.6 749 39 0.95 0.59 811 39
13 0.42 521 27 0.98 0.43 594 13
10 0.51 616 32 0.97 0.47 639 22
9 0.45 548 28 0.98 0.37 502 11
9a 0.43 542 28 0.93 0.58 797 59
6 0.21 255 13 0.95 0.15 209 12
5 0.57 712 37 0.95 0.51 697 39
4 0.5 623 32 0.96 0.43 590 24

Support Vector Machine
58 0.22 288 15 0.93 0.82 1120 81
19 0.255 348 18 0.93 0.85 1157 94
15 0.04 42 2 0.92 0.67 926 80
14 0.22 306 16 0.93 0.86 1179 92
13 – – – – – – –
10 0.5 616 32 0.97 0.47 639 22
9 0.22 287 15 0.92 0.83 1149 87
9a – – – – – – –
6 0.06 65 3 0.92 0.65 884 73
5 0.11 153 8 0.93 0.85 1169 94
4 0.02 30 1 0.91 0.87 1197 116

AdaBoost
58 0.34 483 25 0.98 0.49 672 17
19 0.33 452 23 0.98 0.49 671 17
15 0.19 256 13 0.95 0.22 299 15
14 0.33 452 23 0.98 0.49 671 17
13 0.33 452 23 0.98 0.49 671 17
10 0.3 438 23 0.98 0.49 671 17
9 0.3 438 23 0.98 0.49 671 17
9a 0.17 296 15 0.94 0.21 284 19
6 0.18 267 14 0.94 0.16 213 13
5 0.3 438 23 0.98 0.49 671 17
4 0.3 438 23 0.98 0.49 671 17

a Nine-attribute model based upon data from individual insecticide applications only, in contrast to the other nine-attribute model, which is a mix of management and
summed insecticide attributes.
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incidence extending up to 10 weeks after fruit set (Supplementary
Fig. 2) increases our understanding of the phenology of these pests,
and the use of machine learning models would allow this additional
information on pest risk to be factored into spray decisions.

Machine learning methods require large amounts of data, in this
case preferably over a minimum of 2 or 3 years. An event like the
arrival of a new pest or disease, or the introduction of a new crop
variety or pesticide product that changes the relationship between
attributes and dependent variables, will require the collection of
more data before these models can be used for forecasting. It
remains to be seen how much this requirement hampers the prac-
tical use of machine learning in crop protection forecasting, but it
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Fig. 1. Precision vs. recall plots for the 2010 test data for models with 4, 9, 14, and
58 attributes (see Table 1) using three classifiers, Naïve Bayes, AdaBoost and
Logistic Regression for predicting spray and no-spray decisions for leafroller control
on ‘Hayward’ kiwifruit in summer.
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is likely that these methods will be useful for investigating crop
management data where the data can be collected cheaply and
easily or are already being collected for another purpose.

This example predicts only one spray decision in the year, but it
could be extended to include decisions for other spray applications.
It has succeeded with a minimal data set collected for a different
purpose (market access certification), and which is of poor quality
for the purposes for which we were using it (for example, missing
data, mis-matches between data sets in block names, inconsistent
and incomplete data entry from year to year). Data quality remains
one of the key ongoing issues for data mining/machine learning
implementations (Tien, 2013). A data set collected with the inten-
tion of assisting with pest and disease risk management would
include more parameters of interest. In the case of kiwifruit pro-
duction in New Zealand, these could include aspects of orchard
management (e.g. crop row spacing, shelter tree species and man-
agement, vine age, vine pruning and management information),
landscape factors, and weather factors. We envisage that orchar-
dists would be willing to provide additional data if they received
a positive benefit in return. To facilitate this, they will require a
system for interacting with the machine learning models in real
time. A prototype web-based system that orchardists can use to
run data mining models has been developed and demonstrated
(Fowke and Reutemann, 2013). Using this system, orchardists can
receive spraying application decisions in real time via their com-
puter or telephone. At the same time, growers can be asked to pro-
vide additional information that will be used to improve future
data mining models. They might also, through this system, receive
summaries of regional pest incidence and suggestions for optimal
pesticide use based upon model outputs and the practices of suc-
cessful orchardists in their region. This interface could also assist
growers to plan optimal crop protection programmes at the start
of the season, or provide estimates of biosecurity risks for crops
destined for export.

Other potential sources of data that could be used for pest risk
data mining are postharvest packhouse data. Data on pest inci-
dence on rejected fruit and quality control checks are routinely col-
lected in New Zealand packhouses. At present these data can only
be related to groups of blocks (which are picked on the basis of
fruit maturity criteria), which limits their usefulness for spray fore-
casting. These ideas need further development, with a view to gen-
erating a larger data set and extending the use of data mining
models to other areas of plant protection decision-making in
kiwifruit and possibly other crops. However, data collection is
costly and will only be undertaken where there is a clear financial
benefit. If this is to succeed, it will be necessary to balance the costs
of data collection with returns to growers and to be able to demon-
strate those benefits. Fortunately, significant amounts of useful
data (e.g. orchard management) do not change over time, while
other sources of data (weather) are readily available as a national
resource.
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